SigBox: Automatic Signature Generation Method for Fine-grained Traffic Identification
نویسندگان
چکیده
The continual appearance of new applications and their frequent updates emphasize the need for automatic signature generation. Although several automatic methods have been proposed, there are still limitations to their adoption in a real network environment in terms of automation, robustness, and elaboration. To address this issue, we propose an automatic signature generation method, so called SigBox, for fine-grained traffic identification. Using a modified sequence pattern algorithm, this system extracts three types of signatures: content, packet, and flow signature. A flow signature, the final result of this system, consists of a series of packet signatures, and a packet signature consists of a series of content signatures. A content signature is defined as a distinguishable and unique substring of the packet payload. By using the modified sequence pattern algorithm, we can improve the system performance in terms of automation and robustness. In addition, the proposed method can generate an elaborated signature for fine-grained traffic identification by using flow-level features beyond those of the packet level. In order to verify the feasibility of our proposed system, we present the results of experiments based on ten popular applications according to three defined metrics: redundancy, coverage, and accuracy. In addition, we show the quality of the generated signatures as compared to those produced by existing methods.
منابع مشابه
تولید خودکار الگوهای نفوذ جدید با استفاده از طبقهبندهای تک کلاسی و روشهای یادگیری استقرایی
In this paper, we propose an approach for automatic generation of novel intrusion signatures. This approach can be used in the signature-based Network Intrusion Detection Systems (NIDSs) and for the automation of the process of intrusion detection in these systems. In the proposed approach, first, by using several one-class classifiers, the profile of the normal network traffic is established. ...
متن کاملBoxCars: Improving Vehicle Fine-Grained Recognition using 3D Bounding Boxes in Traffic Surveillance
In this paper, we focus on fine-grained recognition of vehicles mainly in traffic surveillance applications. We propose an approach orthogonal to recent advancement in fine-grained recognition (automatic part discovery, bilinear pooling). Also, in contrast to other methods focused on fine-grained recognition of vehicles, we do not limit ourselves to frontal/rear viewpoint but allow the vehicles...
متن کاملA Study on PSP Algorithm for Automatic Generation of Internet Traffic Signature
In this paper we propose an algorithm approach, so called PSP (Prefix tree for Sequential Patterns) for automatic Internet traffic signatures generation. In presenting PSP algorithm approach, we basically refer it to the GSP (Generalized Sequential Pattern), since PSP algorithm is an extension of GSP algorithm. Actually the two algorithms were originally proposed to deal with data mining proble...
متن کاملDiscovering Emotions in the Wild: An Inductive Method to Identify Fine-grained Emotion Categories in Tweets
This paper describes a method to expose a set of categories that are representative of the emotions expressed on Twitter inductively from data. The method can be used to expand the range of emotions that automatic classifiers can detect through the identification of fine-grained emotion categories human annotators are capable of detecting in tweets. The inter-annotator reliability statistics fo...
متن کاملAn Advanced Hybrid Honeypot for Providing Effective Resistance in Automatic Network Generation
Increasing usage of Internet and computer networks by individuals and organizations and also attackers’ usage of new methods and tools in an attempt to endanger network security, have led to the emergence of a wide range of threats to networks. A honeypot is one of the basic techniques employed for network security improvement. It is basically designed to be attacked so as to get the attackers’...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Inf. Sci. Eng.
دوره 33 شماره
صفحات -
تاریخ انتشار 2017